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N. Stevanovića and D. Nikezić
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Abstract. Collision of swift ions with atoms was considered in this paper. The projectile and target atoms
were modeled as assemblies of quantum oscillators and it was assumed that both, target and projectile
could be excited or ionized, without charge exchange. The model presented here is an extension of the one
given by Sigmund and Haagerup [Phys. Rev. A 34, 892 (1986)]. The number of electrons bound to the
projectile, as a function of the projectile velocity, was used from Cabrera-Trujillo et al. [Phys. Rev. A 55,
2864 (1997)]. Contributions to energy loss from excitation of the projectile and targets were separately
considered. It has been found that projectile excitation contributes up to 20% to the total energy loss in
the lower energy region. Comparisons with other authors, including SRIM 2003, are also given and good
agreement was found.

PACS. 34.50.Bw Energy loss and stopping power – 95.30.Ky Atomic and molecular data, spectra, and
spectral parameters (opacities, rotation constants, line identification, oscillator strengths, gf values, tran-
sition probabilities, etc.)

1 Introduction

Motion of swift charged particles and their penetration in
a medium has been the subject of research in various areas
of physics and other branches of science, such as atomic
and nuclear physics, astrophysics, medical radiology, ma-
terials science and engineering, micro and nano-science,
technology, etc. The stopping power, S, is one of the most
important variables in this field of physics. It is defined
as the ratio of energy, dE, lost on some distance, dx, and
that distance, (S = −dE/dx).

According to the first Born approximation the stop-
ping power of a swift bare projectile with velocity v was
described by Bethe theory [1,2]

S =
4πz2

1e4

mev2
Nz2L (1)

where: N is the number of medium atoms in an unit vol-
ume, z2 is the atomic number of the target; z1e is the
charge of the projectile; me is the rest mass of the elec-
tron and the symbol L is the stopping number.

The target atom could be considered and modeled as
an assembly of classical linear harmonic oscillators with
frequency, ω. This model was firstly introduced and used
in the stopping power calculation performed by Bohr [3–5],
where the projectile was considered as a point like charged
particle.
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The model of oscillators was used for determination
of a higher order correction in the expression for stop-
ping power [6]. Sigmund and Haagerup [7] modeled the
target atom as an assembly of quantum oscillators. They
calculated the stopping number Losc(v, �ω) as a function
of the projectile velocity v and the excitation energy of
the target oscillators, �ω. The stopping number, Lat(v) of
an atom, was obtained as a sum of the stopping numbers
of quantum harmonic oscillators, weighted by the dipole
oscillator strengths, fnn0, of that atom,

Lat (v) =
∑

n

fnn0L
osc (v, En − En0). (2)

Summation has to be performed along all states of the
discrete and continual spectrum.

This approach was employed by Jansen and
Mikkelsen [8] to calculate the energy loss of H+

2 in amor-
phous carbon and for a number of other materials [9,10].

A common characteristic of these papers is that the
projectile was considered as a point like charged particle.
However, when the projectile interacts with target atoms,
some target electrons could be captured causing reduction
of the projectile charge [11]. It has been described that the
projectile is not fully stripped, even at larger energies up
to 10 MeV/nucl, [12].

When both, the projectile and the target carry orbital
electrons, collision energy loss occurs through three mech-
anisms: excitation of target atoms only; excitation of the
projectile atom only; and finally excitation of both, pro-
jectile and target.
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Just the first mechanism occurs for a fully stripped
projectile, and all energy loss results in energy transfer
to the target. If the partially stripped ion is excited in
a collision, the projectile would be slowed down, but no
energy deposition in the target would occur.

The situation becomes more complicated if the pro-
jectile is in a metastable state. In such a case, the target
could be excited without projectile slowing down. It is
even possible that the ion can accelerates after a colli-
sion (partially for a light projectile on a heavy target) by
converting internal energy to kinetic energy (super elastic
collision).

Many attempts have been made to determine stop-
ping of partially stripped ions using Bethe theory. Kim
and Cheng [13] suggested replacement of the projectile nu-
clear charge, z1, and the target mean ionizing energy, I2,
with their effective values, zeff and Ieff , which depend on
the projectile properties. Moneta and Czerbniak [14] used
the first Born approximation and semi-classical impact pa-
rameter description allowing projectile excitation and ion-
ization without electron exchange to calculate the stop-
ping power for a partially stripped projectile. Tsuchida
and Kaneko [15,16] derived an analytical formula for
the electronic stopping power for swift frozen-charge-state
projectiles with two electrons in metastable states. Re-
cently, Glazov [17] calculated the stopping power of a
frozen charge projectile taking into account: elastic col-
lisions; excitation or/and ionization of the target accom-
panied by projectile excitation. Cabrera-Trujillo et al. [18]
calculated the energy loss of partially stripped projectiles
using Bethe’s theory. Excitations and ionizations of both,
projectile and target were taken into account, but without
charge exchange. The number of electrons bound to the
projectile was calculated using the adiabatic Bohr crite-
rion in conjunction with the Thomas-Fermi model of an
atom.

By modeling target atoms as an assembly of quantum
oscillators, Sigmund and Haagerup [7] derived an expres-
sion for the stopping power for a fully stripped ion. They
suggested that the stopping number could be calculated
as a sum of stopping numbers of oscillators weighted by
dipole oscillator strengths of a given target.

Recently, the stopping power was calculated using the
first Born approximation, and modeling the target and
the projectile as quantum oscillators [19]. The assumption
was made that the projectile could be excited and ionized,
not only the target. The stopping power was given as a
function of the excitation energy of the projectile and the
target. The influence of projectile excitation on stopping
power was investigated and it was most significant in the
Bragg peak region.

Kaneko [20] derived the energy loss of hydrogen-like
and helium-like projectiles in a frozen charge state during
the passage, without consideration of projectile excitation.

In the low energy region it is necessary to take into
account some corrections [21] listed below. The shell cor-
rection becomes significant when the projectile velocity
is not much higher than z

2/3
2 v0 (v0 is Bohr velocity and

v0 = 2.18 × 106 m/s). Barkas’s correction has the largest

contribution when v ∼ (z1z2)1/3v0. In addition, Bloch’s
correction is significant when v ∼ 2z1v0 [21]. In the present
paper the projectile velocity, v, is larger than both the av-
erage orbital velocity of target electrons v > z

2/3
2 v0, and

the 1s orbital velocity v > z1v0.
An analytical expression for the energy loss of a projec-

tile with bounded electrons was derived in the presented
paper. Excitation and ionization of both, projectile and
target, without a charge exchange between them, was con-
sidered here. A partially stripped ion and a target were
modeled as assemblies of quantum harmonic oscillators.

In Section 2 of the presented paper, the stopping power
will be given in terms of partial stopping numbers as a
function of excitation energy of the projectile and the tar-
get. The given expression is written in a form convenient
for weighting according to the dipole strength of a given
combination of the projectile and the target, as suggested
in [7,8]. Contributions to the stopping power from pro-
jectile and target excitation will be presented separately.
Shell, Barkas and Bloch corrections are included in the ex-
pression for total stopping power at the end of Section 2.
The results and a conclusion are presented in Sections 3
and 4.

2 Calculation of the stopping power

Stopping power, S, can be calculated through the follow-
ing equation [13,17]

S = N

{
∑

m>m0

(Em−Em0)
∫

dσ0m+
∑

n>n0

(En−En0)
∫

dσn0

+
∑

m>m0; n>n0

((Em − Em0) + (En − En0))
∫

dσnm

}
.

(3)

The first sum on the right side of equation (3) represents
contributions to the stopping power due to excitation of
target atoms while the projectile remains unexcited; the
second term represents a process of projectile excitation
while the target atoms remain unexcited, and the third
term represents the contribution to the stopping power
due to excitation of both, projectile and target atoms. En

and En0 are eigen energies of the projectile and Em and
Em0 are eigen energies of the target atom. The differential
cross section, dσnm, for the interaction between the pro-
jectile and the target atom with transferred energy dQ, in
equation (3) is given as

dσnm =
2πe4

mev2
|F p

nn0 (−�q )|2 ∣∣F t
mm0 (�q )

∣∣2 dQ

Q2
. (4)

Inelastic scattering amplitudes of the projectile and the
target are defined as

F p
nn0 (−�q ) = 〈n| z1 −

∑

i

e−i�q·�ri |n0〉 (5a)

F t
mm0 (�q ) = 〈m| z2 −

∑

j

ei�q·�rj |m0〉 (5b)
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where Q = �
2q2/2me is the energy transferred, and ��q =

�(�k − �k0) represents the momentum transfer. ��k0 and ��k
are linear momentums of the projectile before and after
collision. The law of energy conservation has the following
form for the process considered

�
2k2

0

2M1
− �

2k2

2M1
= (En − En0) + (Em − Em0) . (6)

The minimum kinetic energy, which a projectile losses to
excite itself and the target, can be derived from equa-
tion (6) and expression �q = �(�k − �k0). By this approach
the following expression is obtained

(
(En − En0) + (Em − Em0) +

me

M1
Q

)2

= 2mev
2Q (7)

where, M1 is the projectile mass and me is the electron
mass. Using equation (7) the lower limit of integrals in
equation (3) for transferred energy is given as

Qmin =
((En − En0) + (Em − Em0))

2

2mev2
. (8a)

In calculations presented in [17,18], the maximum momen-
tum transfer was assumed to be equal to that between a
heavy particle and an electron

Qmax = 2mev
2. (8b)

According to equations (4–8), the expression for stopping
power for a partially stripped ion, given by equation (3),
becomes

S =
4πe4

mev2
N

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2
N2

∑

m>m0

2mev2∫

(Em−Em0)2

2mev2

|F p
n0n0|2f t

mm0(Q)
dQ

Q

+
1
2
N1

∑

n>n0

2mev2∫

(En−En0)2

2mev2

fp
nn0 (Q)

∣∣F t
m0m0

∣∣2 dQ

Q

+
1
2
N1N2

∑

m>m0; n>n0

(Em − Em0) + (En − En0)
(Em − Em0) (En − En0)

×
2mev2∫

((En−En0)+(Em−Em0))2

2mev2

fp
nn0 (Q) f t

mm0 (Q)dQ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(9)

where

f i
kk0(Q) =

Ek − Ek0

NiQ

∣∣F i
kk0

∣∣2

are generalized oscillator strengths, Ni is the number of
bound electrons (i = p for a projectile and i = t for a
target).

The expression for the stopping power, given in equa-
tion (9), could be written as a sum of partial stopping
numbers

S =
4πe4

mev2
N
{
N2L

at
t + N1L

at
p + N1N2L

at
t,p

}
(10)

where the partial stopping numbers for the target atom
and the projectile ion are defined over the partial stopping
numbers of oscillators as [7,8]

Lat
t =

∑

m>m0

f t
mm0L

osc
t

(
2mev

2

Em − Em0

)
,

Lat
p =

∑

n>n0

fp
nn0L

osc
p

(
2mev

2

En − En0

)
,

Lat
t,p =

∑

m>m0, n>n0

f t
mm0f

p
nn0

× Losc
t, p

(
2mev

2

Em − Em0
,

2mev
2

En − En0

)
. (11)

The partial stopping numbers for oscillators, Losc, have
forms

Losc
t =

1
2

∑

m>m0

2mev2∫

(Em−Em0)2

2mev2

|F p
n0n0|2 f t

mm0 (Q)
dQ

Q
,

Losc
p =

1
2

∑

n>n0

2mev2∫

(En−En0)2

2mev2

fp
nn0 (Q)

∣∣F t
m0m0

∣∣2 dQ

Q

Losc
t, p =

1
2

∑

m>m0; n>n0

(Em − Em0) + (En − En0)
(Em − Em0) (En − En0)

×
2mev2∫

((En−En0)+(Em−Em0))2

2mev2

fp
nn0 (Q) f t

mm0 (Q)dQ.

(12)

2.1 Calculation of partial stopping numbers, Losc,
of oscillators

In this section the partial stopping numbers for oscillators
are calculated. The first partial stopping number defined
in equation (12) represents an interaction between the pro-
jectile and target where the projectile remains in a ground
state while the target is excited

Losc
t =

1
2

∑

m>m0

(Em − Em0)

×
2mev2∫

(Em−Em0)2

2mev2

|F p
n0n0 (−�q )|2 ∣∣F t

mm0 (�q )
∣∣2 dQ

Q2
. (13)
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A harmonic-oscillator model is used for calculation of the
inelastic target scattering amplitude, Fmm0, as in [7]

∣∣F t
mm0

∣∣2 =
1
m!

(
Q

�ω

)m

e−
Q

�ω , and Em − E0 = m�ωt.

(14)
Then equation (13) becomes

Losc
t =

1
2

∑

m>m0

�ωt

(m − 1)!

2mev2∫

(m�ωt)2

2mev2

|F p
n0n0 (−�q )|2

(
Q

�ωt

)m

× e−
Q

�ωt
dQ

Q2

=
1
2

∑

m>m0

1
(m − 1)!

2mev2
�ωt∫

m2�ωt
2mev2

|F p
n0n0|2 tm−2e−tdt. (15)

In the rightmost part of equation (15) the variable Q is
substituted in t = Q/�ωt. The integration in equation (15)
could be split into two parts [15]: the first part is inte-
gration from tmin = m2

�ωt/2mev
2 to t0, and the second

part is integration from t0 to tmax . t0 represents the value
of integration limits and it is sufficiently small to justify
application of the dipole approximation to the inelastic
scattering amplitude as |F t

mm0|2 = |〈m|∑j ei�q·�rj |m0〉|2 ≈
q2|dmm0|2, where dmm0 is the dipole matrix element.
Hence, equation (15) becomes

Losc
t =

1
2

∑

m>0

1
(m − 1)!

t0∫

m2�ωt
2mev2

|F p
n0n0|2 tm−2e−tdt

+
1
2

∑

m>0

1
(m − 1)!

2mev2
�ωt∫

t0

|F p
n0n0|2 tm−2e−tdt. (16)

Taylor’s expansion, e−t ≈ 1, could be used in the first term
on the right side of equation (16); the first term (m = 1)
of the expansion sum gives the largest contribution. The
order of summation and integration could be exchanged
in the second term of equation (16). Using

∑
m

tm−1/(m−
1)! = et, equation (16) becomes

Losc
t =

1
2

t0∫

�ωt
2mev2

|F p
n0n0|2

dt

t
+

1
2

2mev2

�ωt∫

t0

|F p
n0n0|2

dt

t

=
1
2

2mev2

�ωt∫

�ωt
2mev2

|F p
n0n0|2

dt

t
(17)

and

Losc
t =

1
2

2mev2∫

(�ωt)2

2mev2

|F p
n0n0 (Q)|2 dQ

Q
. (18a)

In a similar way the partial stopping number for a projec-
tile oscillator, Losc

p , could be obtained as

Losc
p =

1
2

2mev2∫

(�ωp)2

2mev2

∣∣F t
m0m0 (Q)

∣∣2 dQ

Q
. (18b)

The atomic form factors F i
00 are equal to F i

00 = zi− iM00;
M00 are matrix elements iM00 = 〈0|∑j e−i�q·�rj |0〉, calcu-
lated from Cabrera-Trujillo et al. [18] as

iM00 = Ni

[
1 − AiQ

(
0.37

AiQ + 13.88
+

0.63
AiQ + 0.96

)]

(19)
where Ai(v) = (2me/�

2)Λ2
i (v)b2 are functions of the pro-

jectile velocity v, defined by Cabrera-Trujillo et al. [18] and
this expression is valid within the Thomas-Fermi model of
an atom.

The integrals in equations (18a) and (18b) can be writ-
ten as

Ii (Q) =
∫ ∣∣F i

00

∣∣2 dQ

Q
=
∫

(zi − iM00)
2 dQ

Q

= (zi − Ni)
2 ln (Q) + Yi (Q) (20a)

where Yi(Q) are calculated as

Yi (Q) = Ni

(
1.9Ni

13.88 + AiQ
+

0.38Ni

0.97 + AiQ

− (0.9Ni − 1.3zi) ln (AiQ + 0.97)

− (0.1Ni − 0.74zi) ln (AiQ + 13.88)

)
. (20b)

By applying the lower integration limit in equation (20a)
and using Taylor’s expansion of function Yi(Q) one can
obtain

Ii (Qmin) = (zi − Ni)
2 ln (Qmin) + Ni (0.3Ni + 1.9zi) .

(21a)
For the upper integration limit one can obtain

Ii (Qmax ) = (zi − Ni)
2 ln (Qmax )
+ Ni (2zi − Ni) ln (AQmax ) . (21b)

By inserting equations (21a, 21b) in equations (18a, 18b)
the following was obtained

Losc
t =

{
(z1−N1)

2 ln
(

2mev
2

�ωt

)
− 1

2
N1

(
(0.29N1 + 1.9z1)

+ (N1 − 2z1) ln
(

4m2
eΛ

2
1b

2v2

�2

))}
, (22a)
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Losc
p =

{
(z2−N2)

2 ln
(

2mev
2

�ωp

)
− 1

2
N2

(
(0.29N2 + 1.9z2)

+ (N2 − 2z2) ln
(

4m2
eΛ

2
2b

2v2

�2

))}
. (22b)

The third partial stopping number of an oscillator, given
by equation (12) could be written as

Losc
t,p =

1
2

∑

m>n0; n>n0

((Em − Em0) + (En − En0))

×
2mev2∫

((Em−Em0)+(En−En0))2

2mev2

|F p
nn0|2

∣∣F t
mm0

∣∣2 dQ

Q2
. (23)

According to equation (16) the last expression could be
transformed into

Losc
t,p =

1
2

∑

m>0; n>0

(m�ωt + n�ωp)
1

m!n!

×
2mev2∫

(m�ωt+n�ωp)2

2mev2

(
Q

�ωt

)m(
Q

�ωp

)n

e
−
(

1
�ωt

+ 1
�ωp

)
Q dQ

Q2
.

(24)

After substitution of t = (1/�ωt +1/�ωp)Q, equation (24)
becomes

Losc
t,p =

1
2

∑

m>m0; n>n0

1
m!n!

mεn
t εm−1

p + nεn−1
t εm

p

(εt + εp)
m+n−1

× Γ

(
m + n − 1,

(mεt + nεp)
2

εt + εp

)
(25)

where εt = �ωt/2mev
2 and εp = �ωp/2mev

2 and
Γ (n, x) =

∫∞
x ξn−1e−ξdξ is the Gamma function.

The partial stopping number Losc
t,p given in equa-

tion (25) was calculated numerically and fitted as a func-
tion of ε−1

t = y and ε−1
p = x. The following was obtained

Losc
t,p (y, x) = 0.1 − 0.001y − 2.5 × 10−7y2 − 0.001x

− 2.5 × 10−7x2 + 0.51 ln (y) + 0.51 ln (x) . (26)

2.2 Calculation of partial stopping numbers, Lat,
for the target and the projectile

The partial stopping numbers of the target and the pro-
jectile, defined in equation (11), could be calculated as
a sum of oscillator stopping numbers, defined in equa-
tions (22a, 22b, 26) [7]. Summation is over all states of

the discrete and continual spectrum, weighted by dipole
oscillator strengths, fii0, of given atoms. One must replace
excitation/ionization energies of atoms, Ei −Ei0 with ex-
citation energies of quantum harmonic oscillators, �ω.

All terms in Losc
t equation (11), are independent of

excitation/ionization energies, except for the first loga-
rithmic term. The final expression for the partial stopping
number, Lat

t , has the form

Lat
t = (z1 − N1)

2 ln
(

2mev
2

I2

)
− 1

2
N1

(
(0.29N1 + 1.9z1)

+ (N1 − 2z1) ln
(

4m2
eΛ

2
1b

2v2

�2

))
. (27)

Here ln I =
∑

m fmm0 ln(Em − Em0) and
∑

m fmm0 = 1
as given in reference [7].

Cabrera-Trujillo [22] treated target electrons as har-
monically bounded and obtained the total stopping cross
section as a sum of orbital electronic cross sections. Taking
into account the property of dipole oscillator strength of
the quantum harmonic oscillator in the ith orbit, f

(i)
mim0 =

δmim0 , they concluded that the orbital ionization poten-
tial Ii is equal to Ii = �ωi0 [22]. In this paper the ap-
proach used is a little bit different. The dipole oscillator
strengths in equation (11) are not for oscillators, but for
atoms, and summation was performed over discrete and
continual atomic energy spectra. This way excitation and
ionization of atoms were taken into account.

Similarly, the partial stopping number, Lp, becomes

Lat
p = (z2 − N2)

2 ln
(

2mev
2

I1

)
− 1

2
N2

(
(0.29N2 + 1.9z2)

+ (N2 − 2z2) ln
(

4m2
eΛ

2
2b

2v2

�2

))
. (28)

Calculation of the partial stopping number, Lt,p, given in
equation (11) was performed by summation over projectile
and target states.

In order to simplify derivation of the expression for
stopping power, corrections were neglected in this section.
They will be added and discussed in the following section.
Hence, the quadratic terms in equation (26) (x and y are
proportional to ∼1/2mev

2; x2 and y2 to ∼(1/2mev
2)2)

that are responsible for shell correction are not taken into
account here (see Ref. [20]). Then, the partial stopping
number Lt,p becomes

Lat
t,p = 0.1 + 0.51 ln

(
2mev

2

I2

)
+ 0.51 ln

(
2mev

2

I1

)
. (29)
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Finally, the expression for the total stopping power given
by equation (10), becomes

S =
4πe4

mev2
N

{
N2 (z1 − N1)

2 ln
(

2mev
2

I2

)

− 1
2
N1N2

(
(0.29N1 + 1.9z1)

+ (N1 − 2z1) ln
(

4m2
eΛ

2
1b

2v2

�2

))

+ N1 (z2 − N2)
2 ln

(
2mev

2

I1

)

− 1
2
N1N2

(
(0.29N2 + 1.9z2)

+ (N2 − 2z2) ln
(

4m2
eΛ

2
2b

2v2

�2

))

+ N1N2

(
0.1 + 0.51 ln

(
2mev

2

I2

)
+ 0.51 ln

(
2mev

2

I1

))}
.

(30)

This expression may be split into two parts: the first one
represents the contribution due to excitation of the tar-
get, St,

St =
4πe4

mev2
NN2

{
(z1 − N1)

2 ln
(

2mev
2

I2

)

−1
2
N1

(
(0.29N1 + 1.9z1) + (N1 − 2z1) ln

(
4m2

eΛ
2
1b

2v2

�2

))

+ N1

(
0.05 + 0.51 ln

(
2mev

2

I2

))}
(31)

and the second one, Sp, represents the contribution due
to projectile excitation

Sp =
4πe4

mev2
NN1

{
(z2 − N2)

2 ln
(

2mev
2

I1

)

− 1
2
N2

(
(0.29N2 + 1.9z2) + (N2 − 2z2) ln

(
4m2

eΛ
2
2b

2v2

�2

))

+ N2

(
0.05 + 0.51 ln

(
2mev

2

I1

))}
. (32)

2.3 Calculation of the stopping power with shell,
Barkas and Bloch corrections

The oscillator stopping number defined by equation (13)
with the shell correction has the form (see Appendix A)

Losc
tc = z2

1

(
ln
(

2mev
2

�ω

)
− C

N2

)

+
1
2
N1 (2z1 − N1)

(
ln
(
A12mev

2
)− 2 ln

(
2mev

2

�ω

))

− 1
2
N1 (0.29N1 + 1.9z1) (33)

where the shell correction is obtained as [7]

C

N2
= 3

�ω

2mev2
. (34)

Two terms were used in reference [7] to describe the shell
correction. Since the projectile velocities considered in this
paper are larger than z

2/3
2 v0 only the first term of the shell

correction was taken into account. The subscript “c” in
the stopping number Losc

tc (see Eq. (33)) means a corrected
stopping number.

According to equation (11), the corrected stopping
number of the target atom has the form

Lat
tc = z2

1

(
ln
(

2mev
2

I2

)
− N1.4

2 v2
0

v2

)

+
1
2
N1 (2z1 − N1)

(
ln
(
A12mev

2
)− 2 ln

(
2mev

2

I2

))

− 1
2
N1 (0.29N1 + 1.9z1) (35)

where the shell correction

C

N2
= 2

K1

2mev2
=

N1.4
2 v2

0

v2

is taken from [2].
Similarly, the partial stopping number, Lp, becomes

Lat
pc = z2

2 ln
(

2mev
2

I1

)
+

1
2
N2 (2z2 − N2)

(
ln
(
A22mev

2
)

− 2 ln
(

2mev
2

I1

))
− 1

2
N2 (0.29N2 + 1.9z2) . (36)

In this case, the shell correction for the projectile in equa-
tion (36) equal to N1.4

1 v2
0/v2 was not taken into account

as its value is less than 3% in comparison to the shell
correction for the target given in equation (35). Equa-
tion (29) was used for the partial stopping number, Losc

tp .
The quadratic terms were neglected because the shell cor-
rection is taken into account in equation (35).

The Bloch correction was derived by Bloch [23] in
an investigation of similarities and differences between
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classical and quantum-mechanical calculations of stopping
power. This correction can be found in [24] and has the
form

z2
1LBloch = −y2

∞∑

n=1

1
n (n2 + y2)

(37)

where y = z1α/β, α = 1/137 is a constant of the fine
structure and β = v/c.

The Barkas correction is proportional to odd power
of the projectile charge and makes stopping power of a
negative charge somewhat smaller than that for a positive
charge, with the same mass and velocity. The first the-
ory using the Barkas effect was developed in [6,25]. Their
results were presented in the following form

LBarkas =
γFARB

(
b/x1/2

)

z
1/2
2 x3/2

(38)

where γ = 1.41 and x = (β/α)2/z2. Tabulation of function
FARB can be found in [6] and the values of constant b
are given in [26]. According to equation (10), the final
expression for stopping power with necessary corrections
has the form

Sc =
4πe4

mev2
N
{
N2L

at
tc + N1L

at
pc + N1N2L

at
t, p

+ (z1 − N1)
3
N2LBarkas + (z1 − N1)

2
N2LBloch

}
. (39)

3 Results

Passing through matter, the projectile nucleus could carry
some bounded electrons, even when its velocity is larger
than the orbital velocity of electrons [13,20]. The projec-
tile charge is variable along the trajectory and the effective
charge zeff was introduced as a function of the projec-
tile velocity. zeff is smaller than z1 even on larger veloc-
ities [11]. In this work, the number of electrons bounded
to the projectile at a certain velocity was adopted from
Cabrera-Trujillo et al. [18]. The relative number of elec-
trons, N1/z1, bounded in a projectile, is presented in Fig-
ure 1 as a function of the projectile energy.

For a fully stripped ion (N1 = 0), equation (30) is
reduced to Bethe’s formula

S =
4πe4

mev2
Nz2

1N2 ln
(

2mev
2

I2

)
. (40)

The stopping power of a hydrogen target for a hydrogen
ion as a function of the projectile energy is given in Fig-
ure 2. Contributions to the stopping power from projec-
tile excitation, Sp (Eq. (32) — triangle scatter) and tar-
get excitation, St, (Eq. (31) — short dashed line) were
given in Figure 2. Their sum given by equation (30) is
given in the same figure as a solid line. The dash-dot line
presents the stopping power calculated according to the
formula given by Cabrera-Trujillo et al. [18]. The scatter
squares present data obtained from SRIM2003 [27], while

Fig. 1. Fraction of bounded electrons as a function of projectile
energy for H and He ions [18].

Fig. 2. Stopping power of hydrogen for hydrogen ions.

the dash-dot-dot line is Bethe’s formula. Good agreement
was found between all groups of data if the energy was
above 0.2 MeV. In the energy region right from the peak
but below 0.2 MeV, the stopping power calculated accord-
ing to Cabrera-Trujillo et al. [18] is slightly lower than the
results obtained from SRIM2003 and equation (30). In the
peak region and lower, a larger discrepancy between the
expression from Cabrera-Trujillo et al. [18], equation (30)
and SRIM2003 exists. In the low energy region, below
0.2 MeV, the contribution due to projectile excitation cal-
culated from equation (32) is up to 20% in respect to the
total stopping power.

Figure 3 gives the stopping power of a He target for a
hydrogen ion. The notation is the same as in Figure 2. The
region of energy presented here is from 0.07 up to 1 MeV.
The behavior of stopping power curves is similar as in
Figure 2. Very good agreement exists between Cabrera-
Trujillo et al. [18], SRIM2003 (Ref. [27]), and this work,
(Eq. (30)). The contribution to the total stopping power
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Fig. 3. Stopping power of helium for hydrogen ions.

Fig. 4. Stopping power of carbon for helium ions.

due to projectile excitation, calculated by equation (32) is
again up to about 18% and depends on the energy.

Figure 4 represents the stopping power of carbon for
a helium projectile as a function of energy. The energy
range is between 1.1 to 4 MeV. Agreement between the
stopping power given by Cabrera-Trujillo et al. [18] and
equation (30) is again very good, but both groups of re-
sults are larger than SRIM2003 in the energy region be-
low 2 MeV. The contribution to the total stopping power
due to projectile excitation is about 10% in respect to
the total stopping power. It was previously shown that
the stopping power is very dependent on the mean excita-
tion energy [28]. In this paper the mean excitation energy
of hydrogen, helium and carbon is 14.9 eV, 41 eV and
77.8 eV, respectively, taken from [24,26].

The results obtained using Bethe’s formula are pre-
sented as dash-dot-dot curves in all graphs. The values
are much larger than the ones obtained using all other
considered methods in the low energy region.

The stopping powers calculated using the formulae
given by Cabrera-Trujillo et al. [18] (line-dot-line) and

Fig. 5. Stopping power of hydrogen for hydrogen ions with
corrections.

Fig. 6. Stopping power of helium for hydrogen ions with cor-
rections.

equation (39) (solid line), with necessary corrections, are
presented in Figures 5–7. The stopping power data from
SRIM2003 [27] is also given in these figures.

Figure 5 represents the stopping power of hydrogen in
hydrogen where the shell, Barkas and Bloch corrections
were taken into account. The considered energy range
of the projectile in this case is E > 40 keV, where the
shell correction is not very significant. Due to the correc-
tions introduced, both curves, given by Cabrera-Trujillo
et al. [18] and equation (39), are lower in respect to those
displayed in Figure 2, particularly in the area of the stop-
ping maximum. The maximum is lower for about 10% and
has shifted to the right. Better agreement with SRIM2003
data was obtained when the corrections were taken into
account.

The stopping power of He atoms for a H ion, with
corrections is represented in Figure 6. The energy range
of the projectile is E > 70 keV, and it can be seen that
both curves are slightly below the data from SRIM2003.
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Fig. 7. Stopping power of carbon for helium ions with correc-
tions.

Figure 7 represents the stopping power of C, for a He
projectile. The energy range is the same as in Figure 4,
i.e. E > 1.1 MeV. All data show very good agreement.

4 Conclusion

During slowing down, projectile ions may carry some
bound electrons. Excitation of such a system is possible,
and this is one of the possible mechanisms of energy loss.
This process should be taken into account in stopping
power calculations. Energy losses of hydrogen and helium
ion projectiles were calculated considering both projectile
and target atoms as assemblies of quantum harmonic os-
cillators.

Modeling of projectile and target as quantum har-
monic oscillators represents calculation of partial stopping
numbers over the states of quantum harmonic oscillators
as in [7]. Then, weighting of partial stopping numbers ac-
cording to the dipole oscillator strengths for a given pro-
jectile and target has to be done, as suggested in [7,8].
This model enables easier evaluation of generalized oscil-
lator strengths. Thomas-Fermi theory which describes an
ion with N1 bound electrons with the radial symmetric
electron density was accepted in this paper as in [18].

The stopping power obtained in this way behaved sim-
ilarly to the one given by Cabrera-Trujillo et al. [18]. The
process of projectile excitation is significant in the Bragg
peak region where it enlarges the total stopping power.
In this case, enlargement of the stopping power due to
projectile excitation is from 10–20%.

We acknowledge the Serbian Ministry of Science and Environ-
mental Protection for supporting this work through project
No. 41023.

Appendix A

The oscillator stopping number for a target, given by
equation (13), could be calculated in the following way.
The atomic form factor for projectile F p

00 is equal to
F p

00 = z1 − M00. Then the expression in equation (13)
could be split into two terms, Losc

t1 and Losc
t2

Losc
t = Losc

t1 + Losc
t2 =

1
2
z2
1

∑

m=1

(Em − Em0)

×
∫ ∣∣F t

mm0

∣∣2 dQ

Q2
+

1
2

∑

m=1

(Em − Em0)

×
∫ (−2z1M00 + M2

00

) ∣∣F t
mm0

∣∣2 dQ

Q2
. (A.1)

The first term of equation (A.1) represents the oscillator
stopping number of the target for the point like projec-
tile [7], while the second term are sources if the electronic
structure of the projectile is taken into account.

According to [7,22] Losc
1t has the form

Losc
t1 = z2

1

(
ln
(

2mev
2

�ω

)
− C

N2

)
, (A.2)

where C/N2 is the shell correction and its first term is
equal to [7]

C

N2
= 3

�ω

2mev2
. (A.3)

By analogy to derivation of equation (18a), the second
oscillator number given in equation (A.1) could be writ-
ten as

Losc
t2 =

1
2

2mev2∫

(�ω)2

2mev2

(−2z1M00 + M2
00

) dQ

Q
. (A.4)

According to equation (19), equation (A.4) becomes

Losc
t2 =

1
2
N1

{
− (2z1−N1) ln (Q)+

0.38N1

0.96+AQ
+

1.9N1

13.88+AQ

+ (1.3z1 − 0.9N1) ln (0.96 + AQ)

+ (0.74z1 − 0.1N1) ln (13.88 + AQ)
}Qmax

Qmin

. (A.5)

For maximum and minimum values of transferred en-
ergy Q, the stopping number Losc

t2 has values

Losc
t2 (Qmax ) =

1
2
N1 (2z1 − N1) ln (A1)

Losc
t2 (Qmin) =

1
2
N1

(
0.29N1 + 1.9z1

− (2z1 − N1) ln(Qmin)
)
. (A.6)
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Using equations (A.2) and (A.6), after some transforma-
tions, the final form of the target oscillator stopping num-
ber becomes

Losc
t = z2

1

(
ln
(

2mev
2

�ω

)
− C

N2

)

+
1
2
N1 (2z1−N1)

(
ln(A12mev

2)−2 ln
(

2mev
2

�ω

))

− 1
2
N1 (0.29N1 + 1.9z1) . (A.7)

Analogously to the previous expression, the projectile os-
cillator number has the form

Losc
p = z2

2

(
ln
(

2mev
2

�ω

)
− C

N1

)

+
1
2
N2 (2z2−N2)

(
ln(A22mev

2)−2 ln
(

2mev
2

�ω

))

− 1
2
N2 (0.29N2 + 1.9z2) . (A.8)
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19. N. Stevanović, D. Nikezić, Phy. Lett. A 340, 290 (2005)
20. T. Kaneko, Phys. Rev. A 43, 4780 (1991)
21. P. Sigmund, Particle Penetration and Radiation Effects

(Springer-Verlag, Berlin, Heidelberg, Germany, 2006)
22. R. Cabrera-Trujillo, Phys. Rev. A 60, 3044 (1999)
23. F. Bloch, Ann. Phys. 16, 285 (1933)
24. S.P. Ahlen, Rev. Mod. Phys. 52, 121 (1980)
25. J.C. Ashley, R.H. Ritchie, W. Brandt, Phys. Rev. A 8,

2402 (1973)
26. ICRU 49, Stopping powers and ranges for protons and

alpha particles, International Commission of Radiation
Units and Measurement, Bethesda, Maryland (1993)

27. J.F. Ziegler, J.P. Biersack, U. Littmark, “The Stopping
and Range of Ion in Matter”, Pergamon Press (1985)
Calculations were performed with SRIM-2003 (see
http://www.SRIM.org)

28. J.R. Sabin, J. Oddershede, Phys. Rev. A 26, 3209
(1982)


